Materials and production technology for energy (5599) |
| Language of instruction : English |
| Credits: 5,0 | | | | Period: semester 1 (5sp)  | | | | | 2nd Chance Exam1: Yes | | | | | Final grade2: Numerical |
| | | Exam contract: not possible |
|
Sequentiality
|
| |
|
No sequentiality
|
|
|
The student has an understanding of mechanical and electrical quantities such as power, energy, efficiency, etc. The student has a basic understanding in analog electronics, electrical engineering and related modeling techniques. The student can measure quantities such as voltage, current... correctly in a lab.
|
|
|
|
This course is studying our electrical energy supply with a focus on the current evolutions towards more renewable electricity production. The emphasis is placed on solar and wind energy in terms of electricity production and batteries for storage. For all three of these technologies an overview is given as to the materials and production technologies used, as well as the main applications. In addition, relevant characterization techniques are also considered, both for the materials and the final applications.
|
|
|
|
|
|
|
|
|
Lecture ✔
|
|
|
|
Practical ✔
|
|
|
|
|
|
|
|
Demonstration ✔
|
|
|
|
Semester 1 (5,00sp)
| Evaluation method | |
|
| Written evaluation during teaching period | 25 % |
|
| Transfer of partial marks within the academic year | ✔ |
|
|
|
|
|
|
|
Second examination period
| Evaluation second examination opportunity different from first examination opprt | |
|
|
 
|
| Compulsory course material |
| |
The necessary course materials will be made available through Toledo.
This course material is a combination of scientific presentations and articles. |
|
|
Learning outcomes Bachelor of Engineering Technology
|
- EC
| EC1 - The holder of thedegreepossesses general scientific and technological application-oriented knowledge of the basic concepts, structures and coherence of the specific domain. | | | - DC
| EM 1.1 The student has knowledge of signal processing and system modelling. | | | | - BC
| De student kan hernieuwbare energiesystemen aan de hand van data, gecombineerd met zelfstudie en modellering, kritisch bespreken .
The student will be able to critically discuss renewable energy systems using data combined with self-study and modelin g. | | | - DC
| EM 1.2 The student has knowledge of general concepts, concepts and formulas related to entrepreneurship and general economics. | | | | - BC
| De student heeft kennis van algemene economische begrippen (bvb. learning curve, bill of materials, e.d.) voor hernieuwbare ener giesystemen.
The student has knowledge of general economic concepts (e.g., learning curve, bill of materials, etc.) for r enewable energy systems. | | | - DC
| EM 1.3 The student has knowledge of the peculiarities of the philosophical discipline and/or of current ethical frameworks with respect to science and technology. | | | | - BC
| De student kan ethische kwesties binnen de energieproblematiek bespreken.
The student will be able to discuss ethical iss ues within energy issues. | | | - DC
| 1.8 The student knows the various internal material structures, material properties, design techniques and product properties. | | | | - BC
| De student kent materiaal- en producteigenschappen voor zonne-, windenergie en batterijen.
The student knows material and product properties for solar, wind and batteries. | | | - DC
| 1.9 The student knows the elementary cross-section quantities and elementary material parameters. | | | | - BC
| De student kent elementaire materiaalparameters voor zonne-, windenergie en batterij technologieën.
The student knows bas ic material parameters for solar, wind and battery technologies. | | | - DC
| EM 1.10 The student has knowledge of properties and applications of different material groups and of measurement methods for measuring workpieces and characterising material properties. | | | | - BC
| De student kan materiaalgroepen en relevante meet- en karakterisatiemethodes voor verschillende hernieuwbare energietoepassingen bespreken.
The student will be able to discuss material groups and relevant measurement and characterization methods for various renewable energy applications. | | | - DC
| EM 1.11 The student has knowledge of general concepts, concepts and calculation methods related to energy systems. | | | | - BC
| De student kan algemene begrippen, concepten en berekeningsmethodes met betrekking tot verschillende hernieuwbare energietoepass ingen bespreken.
The student can discuss general terms, concepts and calculation methods related to various renewable ene rgy applications. | | | - DC
| 1.12 The student knows the key aspects of research methodology and project-based working. | | | | - BC
| De student kan hernieuwbare energiesystemen aan de hand van data, gecombineerd met zelfstudie, kritisch bespreken.
The st udent will be able to critically discuss renewable energy systems using data combined with self-study. | | | - DC
| EM 1.12 The student has knowledge of general concepts, concepts and calculation methods related to Life Cycle Engineering. | | | | - BC
| De student kan algemene begrippen, concepten en berekeningsmethodes met betrekking tot life cycle engineering van verschillende hernieuwbare energietoepassingen bespreken.
The student will be able to discuss general terms, concepts and calculation m ethods related to life cycle engineering of various renewable energy applications. | | | - DC
| 1.14 The student has knowledge of general concepts, concepts and formulas with regard to entrepreneurship and general economics. | | | | - BC
| De student kent economische en energetische aspecten van hernieuwbare energiesystemen.
The student knows economic and ene rgy aspects of renewable energy systems. | - EC
| EC2 - The holder of thedegreepossesses general scientific and discipline-related engineering-technical insight in the basic concepts, methods, conceptual frameworks and interdependent relations of the specific domain. | | | - DC
| EM 2.1 The student has insight into the processing of signals and the modelling of systems. | | | | - BC
| De student kan hernieuwbare energiesystemen aan de hand van data, gecombineerd met zelfstudie en modellering, kritisch bespreken .
The student will be able to critically discuss renewable energy systems using data combined with self-study and modelin g. | | | - DC
| EM 2.2 The student has insight into general concepts, concepts and formulas related to entrepreneurship and general economics. | | | | - BC
| De student heeft inzicht in algemene economische begrippen (bvb. learning curve, bill of materials, e.d.) voor hernieuwbare ener giesystemen.
The student understands general economic concepts (e.g., learning curve, bill of materials, etc.) for renewa ble energy systems. | | | - DC
| EM 2.3 The student has insight into the uniqueness of the philosophical discipline and/or current ethical frameworks with respect to science and technology. | | | | - BC
| De student kan ethische kwesties binnen de energieproblematiek bespreken.
The student will be able to discuss ethical iss ues within energy issues. | | | - DC
| 2.8 The student has insight into the various internal material structures, material properties, design techniques and product properties and the interaction between them. | | | | - BC
| De student kan materiaalstructuren, materiaaleigenschappen, vormgevingstechnieken en producteigenschappen en de interactie ertus sen voor verschillende hernieuwbare energietoepassingen bespreken.
The student can discuss material structures, material properties, design techniques and product properties and their interaction for various renewable energy applications. | | | - DC
| 2.12 The student has insight into philosophies and into current ethical frameworks with regard to science and technology. | | | | - BC
| De student kan ethische kwesties binnen de energieproblematiek bespreken.
The student will be able to discuss ethical iss ues within energy issues. | | | - DC
| EM 2.12 The student has insight into material selection, properties and applications for different material groups and into measurement methods for measuring workpieces and characterising material properties. | | | | - BC
| De student kan materiaalgroepen en relevante meet- en karakterisatiemethodes voor verschillende hernieuwbare energietoepassingen bespreken.
The student will be able to discuss material groups and relevant measurement and characterization methods for various renewable energy applications. | | | - DC
| 2.13 The student has insight into general concepts, concepts and formulas with regard to entrepreneurship and general economics. | | | | - BC
| De student heeft inzicht in algemene economische begrippen (bvb. learning curve, bill of materials, e.d.) voor hernieuwbare ener giesystemen.
The student understands general economic concepts (e.g., learning curve, bill of materials, etc.) for renewa ble energy systems. | | | - DC
| EM 2.13 The student has insight into general concepts, concepts and calculation methods related to energy systems. | | | | - BC
| De student kan algemene begrippen, concepten en berekeningsmethodes met betrekking tot verschillende hernieuwbare energietoepass ingen bespreken.
The student can discuss general terms, concepts and calculation methods related to various renewable ene rgy applications. | | | - DC
| EM 2.14 The student has insight in general concepts, concepts and calculation methods related to Life Cycle Engineering. | | | | - BC
| De student kan algemene begrippen, concepten en berekeningsmethodes met betrekking tot life cycle engineering van verschillende hernieuwbare energietoepassingen bespreken.
The student will be able to discuss general terms, concepts and calculation m ethods related to life cycle engineering of various renewable energy applications. | - EC
| EC4 - The holder of thedegreecan gather and obtain relevant scientific and/or technical information and/or he/she can measure the necessary information efficiently and conscientiously. Additionally, he/she can make correct references to information. | | | - DC
| 4.1 The student can look up scientific and/or technical information in a goal-oriented manner. | | | | - BC
| De student kan wetenschappelijke en/of technische data van hernieuwbare energiesystemen in een rapport kritisch bespreken en zij n conclusies onderbouwen op basis van bronnen uit de literatuur.
The student can critically discuss scientific and/or tec hnical data of renewable energy systems in a report and support their conclusions based on sources from the literature. | | | - DC
| 4.3 The student can refer correctly. | | | | - BC
| De student kan wetenschappelijke en/of technische data van hernieuwbare energiesystemen in een rapport kritisch bespreken en zij n conclusies onderbouwen op basis van bronnen uit de literatuur.
The student can critically discuss scientific and/or tec hnical data of renewable energy systems in a report and support their conclusions based on sources from the literature. | - EC
| EC5 - The holder of thedegreecan analyse unknown, domain-specific problems, subdivide them, structure them logically, determine the preconditions and interpret the data scientifically. | | | - DC
| 5.1 The student can interpret test results, results from simulations, statistical data and/or technical information in a structured manner. | | | | - BC
| De student kan meetresultaten, resultaten uit simulaties, statistische data en/of technische informatie van hernieuwbare energie systemen in een rapport kritisch bespreken en interpreteren.
The student can critically discuss and interpret measurement results, results from simulations, statistical data and/or technical information of renewable energy systems in a report. | | | - DC
| 5.12 The student can analyse the needs for an intended product and compile a set of requirements. | | | | - BC
| De student kan het benodigde eisenpakket aan materiaaleigenschappen en productiemethoden voor technologische energiesystemen kri tisch bespreken en interpreteren, bvb. met het oog op betrouwbaarheid.
The student can critically discuss and interpret t he required requirements of material properties and production methods for technological energy systems, e.g., for reliability. | | | - DC
| 5.13 The student can analyse the force effect in constructions. | | | | - BC
| De student kan het benodigde eisenpakket aan materiaaleigenschappen en productiemethoden voor technologische energiesystemen kri tisch bespreken en interpreteren, bvb. met het oog op betrouwbaarheid.
The student can critically discuss and interpret t he required requirements of material properties and production methods for technological energy systems, e.g., for reliability. | - EC
| EC6 - The holder of thedegreecan select and use adequate solution methods to solve unknown, domain-specific problems and can work methodologically and make solid design choices. | | | - DC
| EM 6.8 The student can select an appropriate material and/or material processing. | | | | - BC
| De student kent elementaire materiaalparameters en productiemethoden voor zonne-, windenergie en batterij technologieën, en kan hieruit een keuze maken op basis van heersende randvoorwaarden.
The student knows basic material parameters and producti on methods for solar, wind and battery technologies, and can select from these based on prevailing boundary conditions. | | | - DC
| 6.12 The student can solve simple problems within energy conversion. | | | | - BC
| De student kent de nodige hernieuwbare energiecomponenten om energieconversieproblemen binnen de Belgische markt kritisch te bes preken.
The student knows the necessary renewable energy components to critically discuss energy conversion issues within the Belgian market. | | | - DC
| 6.13 The student can apply the basic principles for selection of materials and design techniques. | | | | - BC
| De student kent elementaire materiaalparameters en productiemethoden voor zonne-, windenergie en batterij technologieën, en kan hieruit een keuze maken op basis van heersende randvoorwaarden.
The student knows basic material parameters and producti on methods for solar, wind and battery technologies, and can select from these based on prevailing boundary conditions. | - EC
| EC8 - The holder of thedegreecan interpret (incomplete) results, can deal with uncertainties and constraints and can evaluate knowledge and skills critically to adjust own reasoning and course of action accordingly. | | | - DC
| 8.1 The student can validate (calculated, measured or simulated) results against literature and reality. | | | | - BC
| De student kan meetresultaten, resultaten uit simulaties, statistische data en/of technische informatie van hernieuwbare energie systemen in een rapport kritisch bespreken en interpreteren.
The student can critically discuss and interpret measurement results, results from simulations, statistical data and/or technical information of renewable energy systems in a report. | | | - DC
| 8.4 The student can deal with uncertain and/or restrictive contexts. | | | | - BC
| De student kan meetresultaten, resultaten uit simulaties, statistische data en/of technische informatie van hernieuwbare energie systemen in een rapport kritisch bespreken en interpreteren.
The student can critically discuss and interpret measurement results, results from simulations, statistical data and/or technical information of renewable energy systems in a report. | - EC
| EC11 - The holder of thedegreeis able to think and act responsibly realising a project taking into account social and international values, relations and consequences. | | | - DC
| 11.1 The student is aware of sustainability in the various stages of the innovation chain. | | | | - BC
| De student kent algemene begrippen, concepten en berekeningsmethodes met betrekking tot life cycle engineering van verschillende hernieuwbare energietoepassingen.
The student knows general terms, concepts and calculation methods related to life cycl e engineering of various renewable energy applications. | | | - DC
| 11.2 The student has insight and takes into account the interests of different stakeholders. | | | | - BC
| De student heeft inzicht in de impact van hernieuwbare energie op omgeving, distributienet en andere mogelijke stakeholders, en weet hoe hiermee rekening te houden.
The student understands the impact of renewable energy on environment, distribution grid and other possible stakeholders, and knows how to take this into account. | - EC
| EC12 - The holder of thedegreecan act application-oriented and goal-driven and can act academically and professionally with the necessary perseverance and with eye for realism and efficiency, showing a research-oriented attitude towards lifelong learning. | | | - DC
| 12.1 The student has an open attitude to learn from experience, feedback and mistakes. | | | | - BC
| De student wordt geactiveerd om tijdens labo- en/of bedrijfsbezoeken vragen te stellen en hierdoor bij te leren (formatief). The student is activated to ask questions during lab and/or company visits and thereby learn (formative). | | | - DC
| 12.2 The student shows an investigative attitude. | | | | - BC
| De student kan meetresultaten, resultaten uit simulaties, statistische data en/of technische informatie van hernieuwbare energie systemen in een rapport kritisch bespreken en interpreteren.
The student can critically discuss and interpret measurement results, results from simulations, statistical data and/or technical information of renewable energy systems in a report. | | | - DC
| 12.3 The student adopts an appropriate engineering attitude (accurate, efficient, safe, result-oriented,...). | | | | - BC
| De student kan data en/of technische informatie van hernieuwbare energiesystemen nauwkeurig, efficiënt en resultaatgericht in ee n rapport kritisch bespreken en interpreteren.
The student will be able to critically discuss and interpret data and/or t echnical information of renewable energy systems accurately, efficiently and results-oriented in a report. |
|
|
|
| | EC = learning outcomes DC = partial outcomes BC = evaluation criteria |
| Offered in | Tolerance3 |
|
3rd year Bachelor Bachelor of Engineering Technology - Electromechanical Engineering Technology - optie Energy
|
J
|
|
Bridging programme Energy Engineering Technology - deel 1
|
J
|
|
Exchange Programme Engineering Technology
|
J
|
|
master of Energy Engineering Technology (English) choice selection
|
J
|
|
|
1 Education, Examination and Legal Position Regulations art.12.2, section 2. |
| 2 Education, Examination and Legal Position Regulations art.15.1, section 3. |
3 Education, Examination and Legal Position Regulations art.16.9, section 2.
|
|